3,458 research outputs found

    Axisymmetric circumstellar interaction in supernovae

    Get PDF
    Multiwavelength observations of Type II supernovae have shown evidence for the interaction of supernovae with the dense slow winds from the red supergiant progenitor stars. Observations of planetary nebulae and the nebula around SN 1987A show that the slow winds from extended stars frequently have an axisymme- tric structure with a high density in the equatorial plane. We have carried out numerical calculations of the interaction of a supernova with such an axisymme- tric density distribution. For small values of the angular density gradient at the pole, the asymmetry in the interaction shell is greater than, but close to, that expected from purely radial motion. If the angular density gradient is above a moderate value, the flow qualitatively changes and a protrusion emerges along the axis. For a power-law supernova density profile, the flow approaches a self-similar state in which the protrusion length is 2−42-4 times the radius of the main shell. The critical density gradient is larger for steeper density profiles of the ejecta. Most of our calculations are axisymmetric, but we have carried out a 3-dimensional calculation to show that the protrusion is not a numerical artifact along the symmetry axis. For typical supernova parameters, the protrusions take ≳\gtrsim several years to develop. The appearance of the shell with protrusions is similar to that observed in VLBI radio images of the remnant 41.9 +58 in M82 and, possibly, of SN 1986J. We also considered the possibility of asymmetric ejecta and found that it had a relatively small effect on the asymmetry of the interaction region.Comment: 22 page postscript file (gzipped and uuencoded), 10 gzipped postscript figures may be retrieved from ftp://www.astro.su.se/pub/supernova/blc96_asym/ Submitted to Ap

    van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    Get PDF
    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory (DFT). One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3_3, the adsorption of small molecules within metal-organic frameworks (MOFs), the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general purpose functional that could be applied to a range of materials problems with a variety of competing interactions

    No trace of a single-degenerate companion in late spectra of SNe 2011fe and 2014J

    Full text link
    Left-over, ablated material from a possible non-degenerate companion can reveal itself after about one year in spectra of Type Ia SNe (SNe Ia). We have searched for such material in spectra of SN 2011fe (at 294 days after the explosion) and for SN 2014J (315 days past explosion). The observations are compared with numerical models simulating the expected line emission. The spectral lines sought for are H-alpha, [O I] 6300 and [Ca II] 7291,7324, and the expected width of these lines is about 1000 km/s. No signs of these lines can be traced in any of the two supernovae. When systematic uncertainties are included, the limits on hydrogen-rich ablated gas in SNe 2011fe and 2014J are 0.003 M_sun and 0.0085 M_sun, respectively, where the limit for SN 2014J is the second lowest ever, and the limit for SN 2011fe is a revision of a previous limit. Limits are also put on helium-rich ablated gas. These limits are used, in conjunction with other data, to argue that these supernovae can stem from double-degenerate systems, or from single-degenerate systems with a spun up/spun down super-Chandrasekhar white dwarf. For SN 2011fe, other types of hydrogen-rich donors can likely be ruled out, whereas for SN 2014J a main-sequence donor system with large intrinsic separation is still possible. Helium-rich donor systems cannot be ruled out for any of the two supernovae, but the expected short delay time for such progenitors makes this possibility less likely, especially for SN 2011fe. The broad [Ni II] 7378 emission in SN 2014J is redshifted by about +1300 km/s, as opposed to the known blueshift of roughly -1100 km/s for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J. SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of [Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption trough just after B-band maximum.Comment: 13 pages, submitted to A&

    From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides

    Get PDF
    Adsorption and catalytic properties of the polar (111) surface of transition-metal carbides (TMC's) are investigated by density-functional theory. Atomic and molecular adsorption are rationalized with the concerted-coupling model, in which two types of TMC surface resonances (SR's) play key roles. The transition-metal derived SR is found to be a single measurable descriptor for the adsorption processes, implying that the Br{\o}nsted-Evans-Polanyi relation and scaling relations apply. This gives a picture with implications for ligand and vacancy effects and which has a potential for a broad screening procedure for heterogeneous catalysts.Comment: 5 pages, 3 figure

    Atrial high-rate episodes: prevalence, stroke risk, implications for management, and clinical gaps in evidence

    Get PDF
    Self-terminating atrial arrhythmias are commonly detected on continuous rhythm monitoring, e.g. by pacemakers or defibrillators. It is unclear whether the presence of these arrhythmias has therapeutic consequences. We sought to summarize evidence on the prevalence of atrial high-rate episodes (AHREs) and their impact on risk of stroke. We performed a comprehensive, tabulated review of published literature on the prevalence of AHRE. In patients with AHRE, but without atrial fibrillation (AF), we reviewed the stroke risk and the potential risk/benefit of oral anticoagulation. Atrial high-rate episodes are found in 10-30% of AF-free patients. Presence of AHRE slightly increases stroke risk (0.8% to 1%/year) compared with patients without AHRE. Atrial high-rate episode of longer duration (e.g. those >24 h) could be associated with a higher stroke risk. Oral anticoagulation has the potential to reduce stroke risk in patients with AHRE but is associated with a rate of major bleeding of 2%/year. Oral anticoagulation is not effective in patients with heart failure or survivors of a stroke without AF. It remains unclear whether anticoagulation is effective and safe in patients with AHRE. Atrial high-rate episodes are common and confer a slight increase in stroke risk. There is true equipoise on the best way to reduce stroke risk in patients with AHRE. Two ongoing trials (NOAH-AFNET 6 and ARTESiA) will provide much-needed information on the effectiveness and safety of oral anticoagulation using non-vitamin K antagonist oral anticoagulants in patients with AHRE.info:eu-repo/semantics/publishedVersio

    Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)

    Get PDF
    Massive Open Online Courses (MOOCs) have gained in popularity over the last few years. The space of online learning resources has been increasing exponentially and has created a problem of information overload. To overcome this problem, recommender systems that can recommend learning resources to users according to their interests have been proposed. MOOCs contain a huge amount of data with the quantity of data increasing as new learners register. Traditional recommendation techniques suffer from scalability, sparsity and cold start problems resulting in poor quality recommendations. Furthermore, they cannot accommodate the incremental update of the model with the arrival of new data making them unsuitable for MOOCs dynamic environment. From this line of research, we propose a novel online recommender system, namely NoR-MOOCs, that is accurate, scales well with the data and moreover overcomes previously recorded problems with recommender systems. Through extensive experiments conducted over the COCO data-set, we have shown empirically that NoR-MOOCs significantly outperforms traditional KMeans and Collaborative Filtering algorithms in terms of predictive and classification accuracy metrics
    • …
    corecore